319 research outputs found

    Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century

    Get PDF
    The development of northern high-latitude peatlands played an important role in the carbon (C) balance of the land biosphere since the Last Glacial Maximum (LGM). At present, carbon storage in northern peatlands is substantial and estimated to be 500 ± 100 Pg C (1 Pg C = 1015 g C). Here, we develop and apply a peatland module embedded in a dynamic global vegetation and land surface process model (LPX-Bern 1.0). The peatland module features a dynamic nitrogen cycle, a dynamic C transfer between peatland acrotelm (upper oxic layer) and catotelm (deep anoxic layer), hydrology- and temperature-dependent respiration rates, and peatland specific plant functional types. Nitrogen limitation down-regulates average modern net primary productivity over peatlands by about half. Decadal acrotelm-to-catotelm C fluxes vary between −20 and +50 g C m−2 yr−1 over the Holocene. Key model parameters are calibrated with reconstructed peat accumulation rates from peat-core data. The model reproduces the major features of the peat core data and of the observation-based modern circumpolar soil carbon distribution. Results from a set of simulations for possible evolutions of northern peat development and areal extent show that soil C stocks in modern peatlands increased by 365–550 Pg C since the LGM, of which 175–272 Pg C accumulated between 11 and 5 kyr BP. Furthermore, our simulations suggest a persistent C sequestration rate of 35–50 Pg C per 1000 yr in present-day peatlands under current climate conditions, and that this C sink could either sustain or turn towards a source by 2100 AD depending on climate trajectories as projected for different representative greenhouse gas concentration pathways

    Electrolyte gate dependent high-frequency measurement of graphene field-effect transistor for sensing applications

    Full text link
    We performed radiofrequency (RF) reflectometry measurements at 2.4 GHz on electrolyte-gated graphene field-effect transistors (GFETs) utilizing a tunable stub-matching circuit for impedance matching. We demonstrate that the gate voltage dependent RF resistivity of graphene can be deduced even in the presence of the electrolyte which is in direct contact with the graphene layer. The RF resistivity is found to be consistent with its DC counterpart in the full gate voltage range. Furthermore, in order to access the potential of high-frequency sensing for applications, we demonstrate time-dependent gating in solution with nanosecond time resolution.Comment: 14 pages, 4 figure

    Development of Low-Noise/Low-Power Preamplifier for the Readout of Inorganic Scintillators and their Mass Production Test System

    Get PDF
    The development of the preamplifer and all test procedures done by our group during the past several years at the University of Basel will be discussed. In addition, we present the results from the testing of the first 1`500 channels of the preamplifiers for the Crystal Barrel experiment using a specially developed automatized test system

    Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation

    Get PDF
    CO<sub>2</sub> and carbon cycle changes in the land, ocean and atmosphere are investigated using the comprehensive carbon cycle-climate model NCAR CSM1.4-carbon. Ensemble simulations are forced with freshwater perturbations applied at the North Atlantic and Southern Ocean deep water formation sites under pre-industrial climate conditions. As a result, the Atlantic Meridional Overturning Circulation reduces in each experiment to varying degrees. The physical climate fields show changes qualitatively in agreement with results documented in the literature, but there is a clear distinction between northern and southern perturbations. Changes in the physical variables, in turn, affect the land and ocean biogeochemical cycles and cause a reduction, or an increase, in the atmospheric CO<sub>2</sub> concentration by up to 20 ppmv, depending on the location of the perturbation. In the case of a North Atlantic perturbation, the land biosphere reacts with a strong reduction in carbon stocks in some tropical locations and in high northern latitudes. In contrast, land carbon stocks tend to increase in response to a southern perturbation. The ocean is generally a sink of carbon although large reorganizations occur throughout various basins. The response of the land biosphere is strongest in the tropical regions due to a shift of the Intertropical Convergence Zone. The carbon fingerprints of this shift, either to the south or to the north depending on where the freshwater is applied, can be found most clearly in South America. For this reason, a compilation of various paleoclimate proxy records of Younger Dryas precipitation changes are compared with our model results. The proxy records, in general, show good agreement with the model's response to a North Atlantic freshwater perturbation

    Scaling of 1/f noise in tunable break-junctions

    Full text link
    We have studied the 1/f1/f voltage noise of gold nano-contacts in electromigrated and mechanically controlled break-junctions having resistance values RR that can be tuned from 10 Ω\Omega (many channels) to 10 kΩ\Omega (single atom contact). The noise is caused by resistance fluctuations as evidenced by the SV∝V2S_V\propto V^2 dependence of the power spectral density SVS_V on the applied DC voltage VV. As a function of RR the normalized noise SV/V2S_V/V^2 shows a pronounced cross-over from ∝R3\propto R^3 for low-ohmic junctions to ∝R1.5\propto R^{1.5} for high-ohmic ones. The measured powers of 3 and 1.5 are in agreement with 1/f1/f-noise generated in the bulk and reflect the transition from diffusive to ballistic transport

    Minting in Vandal North Africa: coins of the Vandal period in the Coin Cabinet of Vienna's Kunsthistorisches Museum

    Get PDF
    This paper offers a re‐examination of some problems regarding the coinage of Vandal North Africa. The coinage of this barbarian successor state is one of the first non‐imperial coinages in the Mediterranean world of the fifth and sixth centuries. Based on the fine collection in the Coin Cabinet of Vienna's Kunsthistorisches Museum, this article questions the chronology of the various issues and monetary relations between the denominations under the Vandal kings, especially after the reign of Gunthamund (484–96). The Vandals needed and created a solid financial system. In terms of political, administrative and economic structures they tried to integrate their realm into the changing world of late antiquity and the early Middle Ages

    Ocean acidification limits temperature-induced poleward expansion of coral habitats around Japan

    Get PDF
    Using results from four coupled global carbon cycle-climate models combined with in situ observations, we estimate the effects of future global warming and ocean acidification on potential habitats for tropical/subtropical and temperate coral communities in the seas around Japan. The suitability of coral habitats is classified on the basis of the currently observed regional ranges for temperature and saturation states with regard to aragonite (Ωarag). We find that, under the "business as usual" SRES A2 scenario, coral habitats are projected to expand northward by several hundred kilometers by the end of this century. At the same time, coral habitats are projected to become sandwiched between regions where the frequency of coral bleaching will increase, and regions where Ωarag will become too low to support sufficiently high calcification rates. As a result, the habitat suitable for tropical/subtropical corals around Japan may be reduced by half by the 2020s to 2030s, and is projected to disappear by the 2030s to 2040s. The habitat suitable for the temperate coral communities is also projected to decrease, although at a less pronounced rate, due to the higher tolerance of temperate corals for low Ωarag. Our study has two important caveats: first, it does not consider the potential adaptation of the coral communities, which would permit them to colonize habitats that are outside their current range. Second, it also does not consider whether or not coral communities can migrate quickly enough to actually occupy newly emerging habitats. As such, our results serve as a baseline for the assessment of the future evolution of coral habitats, but the consideration of important biological and ecological factors and feedbacks will be required to make more accurate projections

    Hypofractionated radiation therapy for breast cancer: Preferences amongst radiation oncologists in Europe – Results from an international survey

    Get PDF
    Background and purpose: We aimed to assess the prescription preference about hypofractionated radiation therapy (HFRT) for breast cancer (BC) patients amongst radiation oncologists (ROs) practicing in Europe and to identify restraints on HFRT utilisation. Materials and methods: An online survey was circulated amongst ROs in Europe through personal, RO and BC societies’ networks, from October 2019 to March 2020. The statistical analyses included descriptive statistics, chi-squared testing, and logistic regression analysis. Results: We received 412 responses from 44 countries. HFRT was chosen as the preferred schedule for whole breast irradiation (WBI) by 54.7% and for WBI with regional nodes irradiation (RNI) by 28.7% of the responding ROs. In the case of postmastectomy RT with or without reconstruction, HFRT was preferred by 21.1% and 29.6%, respectively. Overall, 69.2% of the responding ROs selected at least one factor influencing the decision to utilise HFRT, the most frequent of which included age (51.4%), RNI (46.9%), internal mammary lymph nodes irradiation (39.7%), BC stage (33.5%) and implant-based breast reconstruction (31.6%). ROs working in academic centres (odds ratio, (OR), 1.7; 95% confidence interval, (CI); 1.1–2.6, p = 0.019), practicing in Western Europe (OR, 4.2; 95%CI; 2.7–6.6, p 50% of clinical time to BC patients (OR, 2.5; 95%CI; 1.5–4.2, p = 0.001) more likely preferred HFRT. Conclusion: Although HFRT is recognised as a new standard, its implementation in routine RT clinical practice across Europe varies for numerous reasons. Better dissemination of evidence-based recommendations is advised to improve the level of awareness about this clinical indication

    Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model

    Get PDF
    © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 6 (2009): 515-533, doi:10.5194/bg-6-515-2009Ocean acidification from the uptake of anthropogenic carbon is simulated for the industrial period and IPCC SRES emission scenarios A2 and B1 with a global coupled carbon cycle-climate model. Earlier studies identified seawater saturation state with respect to aragonite, a mineral phase of calcium carbonate, as a key variable governing impacts on corals and other shell-forming organisms. Globally in the A2 scenario, water saturated by more than 300%, considered suitable for coral growth, vanishes by 2070 AD (CO2≈630 ppm), and the ocean volume fraction occupied by saturated water decreases from 42% to 25% over this century. The largest simulated pH changes worldwide occur in Arctic surface waters, where hydrogen ion concentration increases by up to 185% (ΔpH=−0.45). Projected climate change amplifies the decrease in Arctic surface mean saturation and pH by more than 20%, mainly due to freshening and increased carbon uptake in response to sea ice retreat. Modeled saturation compares well with observation-based estimates along an Arctic transect and simulated changes have been corrected for remaining model-data differences in this region. Aragonite undersaturation in Arctic surface waters is projected to occur locally within a decade and to become more widespread as atmospheric CO2 continues to grow. The results imply that surface waters in the Arctic Ocean will become corrosive to aragonite, with potentially large implications for the marine ecosystem, if anthropogenic carbon emissions are not reduced and atmospheric CO2 not kept below 450 ppm.This work was funded by the European Union projects CARBOOCEAN (511176-2) and EUROCEANS (511106-2) and is a contribution to the “European Project on Ocean Acidification” (EPOCA) which received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 211384. Additional support was received from the Swiss National Science Foundation and SCD acknowledges support from the US National Science Foundation (NSF) grant ATM-0628582

    The multilevel trigger system of the DIRAC experiment

    Get PDF
    The multilevel trigger system of the DIRAC experiment at CERN is presented. It includes a fast first level trigger as well as various trigger processors to select events with a pair of pions having a low relative momentum typical of the physical process under study. One of these processors employs the drift chamber data, another one is based on a neural network algorithm and the others use various hit-map detector correlations. Two versions of the trigger system used at different stages of the experiment are described. The complete system reduces the event rate by a factor of 1000, with efficiency ≄\geq95% of detecting the events in the relative momentum range of interest.Comment: 21 pages, 11 figure
    • 

    corecore